

 Spoon

 a dynamic object system

 Craig Latta

 the NetJam project

 draft six

 estimated length: 500 pages

preface

❧

I have been an avid Smalltalk1 developer for many years. When I
first encountered it, the Smalltalk system was rather mysterious and
hard to get. I was lucky enough to come across a copy of the “blue
book”2 in college; in its pages I imagined what it might be like to build
a system with objects. For me, the message-oriented syntax was
more than clean and compact, it seemed to give the objects distinct
personalities. This made it very easy for me to visualize collaborating
sets of objects, and to keep their roles organized in my mind. I was in-
trigued.

When I started building real systems, I came to appreciate the
dynamic nature of the environment. The ability to fix problems in the
system without restarting it enabled new approaches to problem-
solving that weren’t possible otherwise. I could also halt the system on
one computer and resume it on another, without worrying about oper-
ating systems and processors. Smalltalking was a lot of fun. I was be-
coming addicted.

Spoon: a minimal dynamic object system
 5

1 If you’ve never encountered Smalltalk before, feel free to skip to the end of this preface.

2 Smalltalk-80: The Language and Its Implementation by Adele Goldberg and David Robson

Like many new Smalltalk enthusiasts, I began to wonder: Why
isn’t Smalltalk more popular? What’s holding it back? At the time, the
most widespread programming language was C. As a university stu-
dent, it seemed clear to me why it had succeeded. It was easy to get!
Its owners had a relatively liberal distribution policy, and this enabled a
thriving community of academic hackers who used it. When these
people graduated, they would enter industry with both C experience
and a desire to keep using it. Furthermore, the 1970s, when C was in-
troduced, were a special time in computing history. There were many
programming languages in use, none particularly dominant. It was
easier to assert one’s technical preferences.

The designers of Smalltalk clearly knew the value of “getting
them young”; Alan Kay, the creator of the project, had the improve-
ment of primary education in mind. But Smalltalk’s corporate owners
never committed to this vision. They were only interested in Smalltalk
to the extent that it enhanced their traditional business, and seemed
unable to envision new ones.3 The blue book was about all the world
was going to get from them. The young minds for whom Smalltalk was
intended would have to wait.

In the meantime, I started to notice technical problems with
Smalltalk that hindered its usefulness, quite apart from its political
limitations. Generally, these problems were simply signs of the sys-
tem’s immaturity. As advanced as it was, Smalltalk left the research
lab before its implementors had a chance to provide several critical fa-
cilities. There were also constraints placed on the system by the state
of computing hardware at the time.

One of the wonderful things about Smalltalk is that is was de-
signed to be used and understood by a single person4. Unfortunately,
this emphasis seems to have led to a certain myopia where collabora-
tive development is concerned. There are some measures of support
for collaboration that are fundamental to the system design, and are

6
 Spoon: a minimal dynamic object system

3 see Fumbling the Future by Douglas K. Smith and Robert C. Alexander

4 see Design Principles Behind Smalltalk by Dan Ingalls, BYTE magazine, August 1981

not well done as afterthoughts. I like to think that, given a few more
turns of the observe-formulate-test cycle that Ingalls mentions in his
August 1981 BYTE article, the Smalltalk team would have addressed
some of these issues. As it is, some unfortunate design decisions
seem to have become entrenched in subsequent incarnations of
Smalltalk.

The most problematic of these is a reliance on files to transmit
behavior. Despite the Smalltalk maxim that everything is done by
sending messages, conveying classes and methods between systems
is traditionally done by writing source code to a file (a “fileout”), then
reading the file and recompiling the source code. Another wonderful
thing about Smalltalk is its reflective implementation; it is built using
the very technology it describes. It would be simpler and more direct
to take advantage of that quality, by transferring classes and methods
directly, using messages sent over a network between machines.
There is typically no need to recompile source code, nor to store in-
formation about system components outside the system.

In 1983 when Smalltalk was released, processors were relatively
slow and network connections were rare (although, ironically, Ethernet
was developed at nearly the same time and place). It’s conceivable
that sending Smalltalk messages over a network would have been
seen as utterly impractical. On the other hand, Smalltalk itself was
fairly impractical at the outset; part of the spirit of the project was to
figure out how we’d like to use computers and make it practical. At any
rate, by the mid-eighties distributed operation was feasible by any
measure, but by then Smalltalk development had moved from re-
search to the commercial realm.

I missed out on those early research days. By the time I actually
got to use a Smalltalk system, I had no time for changing the funda-
mentals of the system; I had “real work” to do. But the more real work I
did, the more acute the system’s shortcomings became. Integration of
a team’s work became a dreaded task because of the conflict resolu-
tion that it entailed, despite the fact that much of it could have been
automated through direct negotiation between the target and source

Spoon: a minimal dynamic object system
 7

systems. But even if I had had the time, changing the system wasn’t a
viable option. Although Smalltalk’s object memory has traditionally
been very open (obfuscating method source code isn’t easy even for
the determined), the virtual machine was typically written in a different,
lower-level language like C or assembler, and the source code was
not included.

Squeak5 changed this in 1996. With its virtual machine imple-
mented almost entirely in Smalltalk, navigable and executable with
familiar Smalltalk tools, conducting experiments with the fundamental
elements of the system became easier than it has ever been. Although
I switched to Squeak when it was released, I was still too busy to pur-
sue my own research topics. But in 2002, I found myself at a loss for
real work, so the fun could begin! I decided it would be most enter-
taining to turn Squeak into my desired system in a continuous fashion,
never losing the unbroken thread of persistent object memories dating
back to the 1970s. For the gory details on that adventure, see the ap-
pendix.

for those new to objects...

If you’ve never heard of Smalltalk before, or have never tried
programming for that matter, this history may not be very interesting
yet. That’s fine; this book is not meant as a history lesson, it’s an in-
troduction to object-oriented programming and system design, and,
more importantly, how much fun they can be. I hope you find this book
as intriguing as I found the original blue book.

❧

8
 Spoon: a minimal dynamic object system

5 see Back to the Future The Story of Squeak, A Practical Smalltalk Written in Itself by Dan Ingalls et al

acknowledgments

I’m grateful for the encouragement and support of many people
while I worked on Spoon. Thanks to Alan Kay for creating the Small-
talk idea, to Dan Ingalls, the original virtual mechanic, for his pioneer-
ing implementations of Smalltalk, to Adele Goldberg and Dave Robson
for the wonderfully lucid blue book (whose structure I loosely emulate
here), to Ken Causey and Ken Brown for their early testing help and
for being my first real developers, to Jeff Eastman for real code to
modularize, to John McIntosh, John Randolph and Jeremy Thorpe for
Macintosh help, to Gale Pedowitz and the rest of the Squackers for
demo feedback and good cheer, and to Brenda Larcom, Tim Rowl-
edge, Brian Rice, and the entire Squeak community for technical ca-
maraderie and design feedback. Special thanks to my parents, Joan
and Milton, for their constant love and confidence during my “lean
years”.

Craig Latta
Palo Alto, California
June 2007

Spoon: a minimal dynamic object system
 9

contents

part one: getting started
 13
..chapter one: why?
 15

........chapter two: installing and starting the system
 21

part two: the memory
 25
........................chapter three: objects and messages
 27

...chapter four: syntax
 33

.........................chapter five: the Spoon object model
 41

...........................chapter six: what all objects can do
 43

......................chapter seven: fundamental constants
 45

..chapter eight: magnitudes
 47

...chapter nine: numbers
 49

...chapter ten: collections
 51

..chapter eleven: streams
 53

..chapter twelve: processes
 55

part three: tools
 57
..chapter thirteen: inspectors
 59

...........................chapter fourteen: the class browser
 61

......................................chapter fifteen: the debugger
 63

10
 Spoon: a minimal dynamic object system

part four: the processor
 65
.....................chapter sixteen: architectural overview
 67

......................chapter seventeen: the object memory
 69

..........................chapter eighteen: the instruction set
 71

.................................chapter nineteen: the primitives
 73

.............................chapter twenty: remote messages
 75

...chapter twenty-one: building your own processor
 77

part five: distributed operation
 79
............chapter twenty-two: imprinting and modules
 81

...........................chapter twenty-three: collaboration
 88

................................chapter twenty-four: deployment
 92

appendix A: the Spoon story
 94
appendix B: notes on the text
 96
index
 99

❧

Spoon: a minimal dynamic object system
 11

12
 Spoon: a minimal dynamic object system

part one: getting started

Spoon: a minimal dynamic object system
 13

14
 Spoon: a minimal dynamic object system

chapter one: why?

Spoon: a minimal dynamic object system
 15

16
 Spoon: a minimal dynamic object system

❧

Why program?

I sometimes ask myself this question late at night, in the middle
of an intense debugging1 session. There’s something magical about
getting a computer to do your bidding. It’s certainly nice to watch a
movie or listen to music with a computer, but more fun to use it to ex-
press your own ideas. And it’s a special kind of fun, where one is en-
gaged by solving problems and creating new ones. It’s hard fun2.

When we use computers for hard fun, we get at Smalltalk’s origi-
nal purpose, the amplification of thought. We fulfill the original vision of
the personal computer as an extension of the mind. We also tran-
scend our default societal roles as consumers, becoming producers
as well as collaborators. This is a powerful form of freedom, in which
we are more engaged with the world and its possibilities.

Spoon: a minimal dynamic object system
 17

1 problem-solving; search the web for the amusing etymology of this word

2 see Hard Fun by Seymour Papert, an article on the web

Another thing that makes this sort of fun special is that it gets re-
sults. When you solve a problem, you can reuse the solution in future
situations and use it to solve more complicated problems. The com-
puter then becomes a tool for inspiration. Using what you’ve made will
lead you to think of new capabilities you hadn’t considered before, and
refinements that make your previous solutions better. This is a feed-
back loop that grows ever more satisfying over time.

Why program with Spoon?

For the computer to be most effective as a tool for thinking, it
should complement one’s thought processes without distracting from
them. Ideally, it will enable a state of flow3, in which one is fully im-
mersed in an activity, successful with a feeling of effortlessness, fre-
quently losing track of time in the process. I enter this state when I im-
provise music with other people. My instrument becomes part of me,
responsive and suggestive of new possibilities, never getting in the
way of my experimentation. The time between “What if...?” and a re-
sult is always very short.

So it is with dynamic object-oriented programming. The entire
system is live, open to modification at all times because it’s always
running. In the best environments, the system is implemented using
the same facilities made available to the programmer4. When one can
change anything about the system at any time and without having to
use different tools or adopt a different mindset, one has the freedom to
take an improvisatory approach to programming.

This freedom is vital not only when building a new system, but
also when modifying an existing one. Since you never have to stop the
running system, you never lose the state you have acquired from run-
ning it. This is invaluable in diagnosing why things have gone wrong.
With Smalltalk, since the entire system is built around a single concept
(objects sending messages to each other), once you have diagnosed

18
 Spoon: a minimal dynamic object system

3 search for Mihaly Csikszentmihalyi for historical background on flow in psychology

4 this is sometimes referred to as being implemented “in itself”

a problem, you can continue a process from the point of failure, or any
earlier point. With Spoon, the system you’re editing may be on your
own computer or your friend’s (or, more likely, spread across both).

It’s enough to make you forget to go to bed and stay up late into
the night!

Spoon: a minimal dynamic object system
 19

20
 Spoon: a minimal dynamic object system

chapter two: installing and starting the system

Spoon: a minimal dynamic object system
 21

22
 Spoon: a minimal dynamic object system

❧

This is the part that was missing from the blue book... take a
moment to bask in how fortunate you are now. Well, do one thing first:
visit http://netjam.org/spoon/releases/current/. You can bask during the
few seconds it takes to download the current release.

Follow the instructions that came with the release. You’ll end up
with a Spoon system running on your machine, communicating with
you through a web browser:

Spoon: a minimal dynamic object system
 23

Click on the link for viewing a list of available modules. Load the
development tools module. A new window will open. This is a Spoon
display, with its own window system. A workspace will open within it.
Now it’s time for another reverent moment: type “3 + 4” into the work-
space, select the text, and type meta-p1.

You’ve just evaluated your first Spoon expression. It happens to
be the canonical first test for Smalltalk systems (a surprisingly large
portion of the system must work correctly for this to run properly).
You’ve also used your first tool in the Spoon environment, a work-
space. Workspaces are like handy pieces of scratch paper, ready for
evaluating expressions which don’t yet have a formal home. We’ll just
be using this workspace for a while.

24
 Spoon: a minimal dynamic object system

1 On Macintosh, the meta key is the one with the Apple logo. On Windows and Linux it’s the alt key.

part two: the memory

Spoon: a minimal dynamic object system
 25

26
 Spoon: a minimal dynamic object system

chapter three: objects and messages

Spoon: a minimal dynamic object system
 27

28
 Spoon: a minimal dynamic object system

❧

Now that you’ve evaluated a Spoon expression, you’ve used
objects. In particular, you’ve sent messages to objects. Everything in
the Spoon system is done by sending messages to objects. In the ex-
pression you evaluated, you sent the message “+ 4” to the object 3.
The object 3 responded with the answer, the object 7. To get the
evaluation to happen, you pressed keys on the keyboard, which re-
sulted in messages sent to a keyboard event handler object. To dis-
play the answer, the system sent messages to graphics objects.

An object is a combination of state and behavior. An object’s
state is a private collection of references to other objects, while its be-
havior is a set of operations that it can perform. A message is a re-
quest by an object for another object to perform one of its operations.
The object to which a message is sent is the receiver; the object
sending it is the sender. The receiver of a message determines how it
will react. There is a fundamental separation here, between the goal
expressed by the sender through a message, and the strategy imple-
mented by the receiver in response to that message.

Spoon: a minimal dynamic object system
 29

Since sending messages is the only way for objects to interact,
the nature of an object is typified by its responses to messages. This
is why an object’s operations are called its “behavior”. Formally, each
operation that an object makes available to other objects is a contract,
an agreement to perform work according to a shared meaning of the
message which invokes it. The union of all the messages to which an
object responds is its message interface.

With discretion over the implementation of its operations, an ob-
ject is free to use the most suitable state to represent itself, as long as
it fulfills its message interface. For example, the state employed by a
integer like 3 will probably differ from that of a fraction. Nevertheless,
both objects support the same message for performing addition. With
this independence of behavior from representation, we may compose
modular systems. One need not know anything about the internal
structure of an object to use it; only its behavior is important.

Message-sending is the core idea of object-oriented program-
ming1. From now on, we’ll discuss tactics for organizing a system
around this idea, and for using such a system.

The first organizational question we face is this: where do ob-
jects come from? Like everything else, creating new objects is some-
thing accomplished by sending messages. There are a set of objects
in the Spoon system that support a message interface for creating
new objects. These objects are called classes. When a class receives
an object-creation message, it responds with a new object that is an
instance of itself. Every object in the system, including the classes
themselves, is an instance of some class.

All the instances of a class share the same format; that is, the
state of each instance is arranged in the same way, although the par-
ticular objects to which an instance refers may be different. All the in-
stances of a class also share the same behavior. Both the state format
and behavior are defined by the class.

30
 Spoon: a minimal dynamic object system

1 Indeed, it might more appropriately be called message-oriented programming.

The permanent parts of an object’s state are called instance
variables2. Each instance variable refers to some other object in the
system. Each instance of a particular class has the same number of
instance variables, and the same meanings associated with them. The
behavior that a class provides for its instances is composed of meth-
ods.

When you sent the message “+ 4” to the object 3, you invoked a
method, provided by 3’s class, for adding a number to the receiver
and answering the result. The object 4 is a parameter for that method.
It’s a temporary variable from the receiver’s point of view, a temporary
part of its state. Generally, a method’s activity consists of sending
messages to the objects of the receiver’s state. A method concludes
by answering an object (in this case, 7).

Methods determine what happens when you send messages to
objects; they are the venue in which objects send messages to each
other. You’ll spend most of your time reading and writing them. “Pro-
gramming” with Spoon means:

• defining a desired effect

• identifying the objects for creating that effect

• defining and refining the behavior for those objects

It’s important to note that the class/instance aspect of Spoon
objects is not fundamental to object-oriented programming; it is simply
one way of organizing behavior3.

For further details on the composition of individual objects, see
chapter five. First, though, we’ll look at how to refer to objects and
send messages to them through expressions; we’ll learn how to write
methods.

Spoon: a minimal dynamic object system
 31

2 also known as slots

3 Another is based on the concept of prototypes, in which each object is responsible for its own behavior.
See, for example, the Self system.

32
 Spoon: a minimal dynamic object system

chapter four: syntax

Spoon: a minimal dynamic object system
 33

34
 Spoon: a minimal dynamic object system

❧

Let’s take one more look at that first expression, “3 + 4”. The re-
ceiver is the object 3. The message we’re sending to 3 is “+ 4”. A
message has two parts: a selector, which is the name of the message,
and one or more parameters. For this message, the selector is “+” and
the parameter is the object 4.

We’re going to create our own method, which is just a collection
of one or more expressions. The first thing we need is a goal; what will
this method do? Let’s start with something simple, again in the realm
of arithmetic. Our goal will be to calculate the square of the receiver.

Given this goal, we need a name for our method. Note the con-
versational nature of the first selector we encountered. It made the
expression, “3 + 4”, look like a phrase you might encounter in normal
conversation. You can think of an object’s selectors as its vocabulary,
a list of commands that it understands. Through conversation, we an-
thropomorphize with which we interact. It is traditional to refer to each
object as if it were autonomous, with a will of its own. Objects are very
much like characters in a story1.

Spoon: a minimal dynamic object system
 35

1 Indeed, one object system refers to them as actors.

With this rationale, the most appropriate name for a method
which answers the square of the receiver is “squared”. This will yield
an expression like “3 squared”. The very next thing we need to do is
record our method’s goal, so that it will be clear to anyone reading the
method later. We do this with a comment. Comments are enclosed in
double quotation marks. So far, our method looks like this:

squared
	

 “Answer the square of myself.”

In keeping with the anthropomorphic nature of objects, the com-
ment is written in the first person, from the receiver’s point of view.
Note also that we used the word “answer” instead of “return”, in keep-
ing with our conversational metaphor.

Now we must consider our tactic for answering the square of the
receiver, our algorithm. As you probably remember from grade school
arithmetic, the square of a number is simply the product of the number
with itself. We’ve already seen how to add two numbers together;
multiplying them is similar. The selector for the method for multiplica-
tion is “*”. What we need to know now is how to refer to the receiver
itself.

We do this with the special variable “self”. So, instead of writing
“3 + 4”, we write “self * self”. Now all we need to know is how to an-
swer a result. This is done with the “^” operator2 (pronounced “an-
swer”). Here’s our finished method:

squared
	

 “Answer the square of myself.”

	

 ^self * self

36
 Spoon: a minimal dynamic object system

2 In the original Smalltalk font, this character appeared as an upward-pointing arrow.

To run this method, we need to compile the source code we have
written and install it in some class, so that an instance of that class will
understand a message that invokes it. There are sophisticated tools
for entering source code and compiling it, using a graphical user in-
terface. However, for now, we’ll do everything by evaluating expres-
sions directly in our workspace.

In which class shall we install our method? Well, for now, we’re
interested in using the object 3 as our receiver, so we’ll install it in the
class of which 3 is an instance. You can do that by evaluating the fol-
lowing expression:

3 class compile: ‘
	

 squared
	

 	

 “Answer the square of myself.”

	

 	

 ^self * self’

Now we can evaluate an expression which uses our method.
Evaluate “3 squared”, yielding 9. You’ve just extended the Spoon
system; now every instance of that class knows how to answer the
square of itself (try evaluating other expressions like “4 squared”).

We have now seen three kinds of method selector. The first (“+”)
was a binary selector. Messages using binary selectors use one pa-
rameter (as in “3 + 4” or “self * self”). The second (“squared”) was a
unary selector. Messages using unary selectors use no parameters.
We saw the third when we compiled our new method with “compile:”.
This is a keyword selector. Keyword selectors are composed of one or
more keywords, each ending with a colon.

Let’s write another method, this time using a keyword selector.
The goal this time will be to answer the receiver raised to a given
power, a generalization of our previous method (where we raised the
receiver to the second power). We’ll call this method “raisedTo:”.

Spoon: a minimal dynamic object system
 37

Our expression will look like this: “3 raisedTo: 4”. In our method,
we’ll need to have a way to refer to the parameter in the message, by
giving it a name. It’s usually best to use names which are evocative of
the domain of the problem. The problem domain here is arithmetic,
and a good name for the parameter would be “exponent”.

raisedTo: exponent
	

 “Answer myself raised to the power given by
exponent.”

In this method, “exponent” is a temporary variable; we can use it
whenever we need to send messages to the parameter, or if we need
to use it as a parameter in other messages we send.

We can also define temporary variables that are not parameters
of the method. These are usually used to store intermediate results
that will get used more than once in the method. We define temporary
variables by enclosing all their names in a single pair of vertical bars
at the beginning of the method, after the comment.

Let’s define a temporary variable to keep track of a running
product. We’ll use it to keep track of a number of multiplications of the
receiver with itself. We want to initialize it to one, since any number
raised to the zeroth power is one. Variables are set with the “:=” op-
erator3 (pronounced “gets”).

In our algorithm here, we’ll want to multiply the product by the
receiver repeatedly, as many times as the exponent parameter.
There is a method in the system for evaluating a set of expressions
repeatedly, called timesRepeat:. It’s part of the behavior of integers.
Its parameter is the set of expressions to be evaluated, enclosed in a
block closure. We create a block closure in source code by enclosing
expressions in square brackets.

38
 Spoon: a minimal dynamic object system

3 With the original Smalltalk font, a left-pointing arrow was used for assignment.

raisedTo: exponent
	

 “Answer myself raised to the power given by
exponent.”

	

 | product |

	

 “Initialize the product to one.”
	

 product := 1.

	

 exponent timesRepeat: [
	

 	

 “Multiply the product by myself.”
	

 	

 product := self * product].

	

 “Answer the product.”
	

 ^product

We now have multiple expressions in our method. They are
separated by periods, like English sentences.

Block closures are used in many situations to defer the evalua-
tion of expressions. Their most common use is with the conditional
messages ifTrue:, ifFalse:, and ifTrue:ifFalse:, understood by boolean
objects. We can use one of them to deal with negative exponents:

(exponent < 0) ifTrue: [
	

 “Answer the reciprocal of myself raised to the
power of exponent negated.”
	

 ^1 / (self raisedTo: exponent negated)]

Note in that snippet that we invoked the method we’re writing.
This is quite common, often as recursion.

The numbers we’ve been using (like 0, 1, 3, and 4) are examples
of literal objects. We can refer to them directly with the language syn-

Spoon: a minimal dynamic object system
 39

tax, without having to use variable names. There are other kinds of lit-
erals as well; let’s take a look at them. The first kind we’ll look at is an
array literal.

To make an array literal, enclose one or more other literals in pa-
rentheses, with a leading number sign (“#”). For example, “#(3 4)”.
This denotes an array with two elements, the literal objects 3 and 4.
You can nest array literals, and only the outermost number sign is re-
quired. For example, you can write #(#(3 4) #(5 6)) or #((3 4) (5 6)).

A character literal denotes a single alphanumeric character, with
a leading dollar sign. For example, $A is the capital letter A, and $3 is
the character 3 (as opposed to the number 3).

strings

40
 Spoon: a minimal dynamic object system

chapter five: the Spoon object model

Spoon: a minimal dynamic object system
 41

42
 Spoon: a minimal dynamic object system

chapter six: what all objects can do

Spoon: a minimal dynamic object system
 43

44
 Spoon: a minimal dynamic object system

chapter seven: fundamental constants

Spoon: a minimal dynamic object system
 45

46
 Spoon: a minimal dynamic object system

chapter eight: magnitudes

Spoon: a minimal dynamic object system
 47

48
 Spoon: a minimal dynamic object system

chapter nine: numbers

Spoon: a minimal dynamic object system
 49

50
 Spoon: a minimal dynamic object system

chapter ten: collections

Spoon: a minimal dynamic object system
 51

52
 Spoon: a minimal dynamic object system

chapter eleven: streams

Spoon: a minimal dynamic object system
 53

54
 Spoon: a minimal dynamic object system

chapter twelve: processes

Spoon: a minimal dynamic object system
 55

56
 Spoon: a minimal dynamic object system

part three: tools

Spoon: a minimal dynamic object system
 57

58
 Spoon: a minimal dynamic object system

chapter thirteen: inspectors

Spoon: a minimal dynamic object system
 59

60
 Spoon: a minimal dynamic object system

chapter fourteen: the class browser

Spoon: a minimal dynamic object system
 61

62
 Spoon: a minimal dynamic object system

chapter fifteen: the debugger

Spoon: a minimal dynamic object system
 63

64
 Spoon: a minimal dynamic object system

part four: the processor

Spoon: a minimal dynamic object system
 65

66
 Spoon: a minimal dynamic object system

chapter sixteen: architectural overview

Spoon: a minimal dynamic object system
 67

68
 Spoon: a minimal dynamic object system

chapter seventeen: the object memory

Spoon: a minimal dynamic object system
 69

70
 Spoon: a minimal dynamic object system

chapter eighteen: the instruction set

Spoon: a minimal dynamic object system
 71

72
 Spoon: a minimal dynamic object system

chapter nineteen: the primitives

Spoon: a minimal dynamic object system
 73

74
 Spoon: a minimal dynamic object system

chapter twenty: remote messages

Spoon: a minimal dynamic object system
 75

76
 Spoon: a minimal dynamic object system

chapter twenty-one: building your own processor

Spoon: a minimal dynamic object system
 77

78
 Spoon: a minimal dynamic object system

part five: distributed operation

Spoon: a minimal dynamic object system
 79

80
 Spoon: a minimal dynamic object system

chapter twenty-two: imprinting and modules

Spoon: a minimal dynamic object system
 81

82
 Spoon: a minimal dynamic object system

❧

As we saw in chapter twenty, we can send any message to any
object on any machine, with any other objects as parameters. Since
all the infrastructure for organizing classes and methods exists as ob-
jects, we can use our remote message-sending capability to install
behavior on other machines. The direct installation of behavior on re-
mote machines is called imprinting.

An analogy I like to make is with a scene in the film The Matrix.
At one point, the character Trinity has an urgent need to fly a helicop-
ter, but has no idea how. Fortunately for her, the helicopter is just an
element in a computer simulation to which her brain is connected, and
a computer-wielding colleague outside the simulation can simply im-
press helicopter-flying knowledge upon her mind. After a short phone
call to request this knowledge from the operator, she knows how to fly
the helicopter.

Spoon: a minimal dynamic object system
 83

A Spoon system can make similar requests of other systems on
the net. To enable this, the systems must be connected. The connec-
tions between Spoon systems are called wormholes. When a system
resumes, it activates a singleton instance of WormholeServer, which
listens for connections from other systems. This WormholeServer
can also establish connections to other systems; its clients are in-
stances of Wormhole, a subclass of MessagingSession.

After a connection is established, each system’s Wormhole-
Server has a Wormhole client associated with the connection. Each
system can access the other’s Wormhole by sending peer to its local
Wormhole. Once a remote system can send messages to it, a Worm-
hole is the remote system’s initial point of presence in the local sys-
tem. The Wormhole provides various system services to the remote
system, such as making object memory snapshots.

Since remote messages can be sent to instances of any class,
with any objects as parameters, the methods of Wormhole may be
written without regard to the fact that they will be invoked from afar.
Similarly, the protocol for sending remote messages need not concern
itself with the details of any particular messages that might be sent. In
particular, a system can use a remote Wormhole to gain access to a
peer system’s classes, so that it can install methods and create new
classes.

This access is not provided directly by the Wormhole, however.
Most of the protocol for transferring behavior between systems is pro-
vided by modules. Once you have a reference to a remote Wormhole,
you can get a new remote Module by sending the message module
to it. Modules record the presence and absence of methods in the
system. They also know how to define new classes and install com-
piled methods, under the direction of the remote originals. A Module
may be made a prerequisite of other Modules.

Many of the objects that Modules manipulate, such as classes,
are known to humans by textual names. Since names can change and
conflict, Spoon avoids using those names as much as possible. In-

84
 Spoon: a minimal dynamic object system

stead, named objects are associated with universally unique identifi-
ers, or UUIDs1. Each Metaclass, for example, has an instance vari-
able id which refers to an instance of UUID, a subclass of ByteAr-
ray. Every behavior, therefore, may identified by a combination of a
Metaclass id and a Boolean indicating whether or not it’s a Meta-
class. For example, class Array is identified by the ID for (Array
class) and false, while (Array class) is identified by the same
ID and true.

In a network conversation between MessagingSessions,
these UUID/Boolean combinations are conveyed by instances of Be-
haviorID, another subclass of ByteArray. Each BehaviorID
contains the bytes of the UUID, and a bit for the Boolean. Whenever
a Module needs to refer to a Behavior, it uses a BehaviorID in-
stead of the Behavior’s name.

Another prominent system class which specifies an ID is
Author. Each Author corresponds to a code-generating entity (usu-
ally a person). Each version of each class, method, and module has at
least one Author. Finally, each Module has an ID as well.

New Modules may be created at will. One may then specify the
method presences and absences asserted by the Module:

| module |

module := (
	

 Module
	

 	

 named: ‘a sample module’
	

 	

 withDescription: ‘just a short example’).

module
	

 addMethodNamed: #yourself inBehavior: Object;
	

 addAbsenceOfMethodNamed: #zork inBehavior: Object

Spoon: a minimal dynamic object system
 85

1 search the web for “Leach Salz UUID” for the specification

When this Module is installed in a remote system, it will ensure
that the target system has the method Object>>yourself, and that
it does not have the method Object>>zork.

A Module records method information with instances of
MethodDescription. Each MethodDescription refers directly to
the local class, selector, version, and author of a method. In remote
messages, MethodDescriptions are represented by instances of
MethodID, a subclass of BehaviorID which includes storage for a
selector and method version.

For other people to install our Module, they need to discover it
first. Spoon provides a relay network of server systems which both
advertise available modules and provide for their installation (for the
details of this system, see chapter twenty). For now, let’s assume that
someone has discovered our module and, armed with the module’s
ID, has begun installing it.

The receiving system’s WormholeServer connects to the pro-
viding system’s WormholeServer, creating a Wormhole that repre-
sents the connection. Sending peer to this local Wormhole, the re-
ceiving system obtains the corresponding Wormhole in the providing
system. The receiving system then asks the providing system’s Worm-
hole for the Module corresponding to the desired module ID. Finally,
the receiving system creates a new empty module and asks the pro-
viding module to synchronize with it.

At this point, the providing module takes over, guiding the re-
ceiving module in modifying its system so that the providing module’s
assertions are true in both systems. After setting the receiving mod-
ule’s name and description to match its own, and ensuring that the re-
ceiving system is synchronized with all of its prerequisite modules, the
providing module asks each of its asserted compiled methods to de-
fine itself in the receiving system.

Whenever an object in the providing system has a question
about the receiving system, it simply asks the receiving module. For

86
 Spoon: a minimal dynamic object system

example, when an asserted method is asked to ensure its existence in
the receiving system, the first thing it does is ask the receiving module
if an equivalent method already exists there. If so, then the method
doesn’t need to do anything. If not, the method ensures that its Be-
havior exists in the receiving system, defining it if necessary, and in-
stalls a copy of itself.

This marks an important difference between using live objects
and static files for transferring behavior. With files, the state of the re-
ceiving system is not taken into account. If a method is provided for a
class which is missing or has an old definition, an unrecoverable error
occurs. If a method is provided which is already present, the receiving
system spends time compiling and installing it anyway, creating a su-
perfluous version. With live objects negotiating directly, only what is
needed is transferred, and the receiving system doesn’t have to com-
pile anything.

When the modules are finished synchronizing, the receiving
module is a perfect copy of the providing module, able to convey the
same assertions to other systems.

Spoon: a minimal dynamic object system
 87

chapter twenty-three: collaboration

88
 Spoon: a minimal dynamic object system

Spoon: a minimal dynamic object system
 89

❧

Most of your time using Spoon will be spent collaborating with
others and with yourself. You will find your past self to be your most
important collaborator, and very much like another person as your
frame of mind changes. Over time, you will forget the context in which
you made various design and implementation decisions. The tools will
help you answer the frequently-asked question “What was I thinking?”

While the environment is a great aid to understanding past de-
velopment, it is most effective when used with a certain discipline. The
central virtue of this discipline is creating documentation. You can at-
tach a comment to nearly every system component: methods, method
categories, classes, class categories, authors, and modules. Your pri-
mary activity will be reading old code, either learning how to use it with
your own code, or fixing problems with it. The more comments you
write, the easier your development life will be.

90
 Spoon: a minimal dynamic object system

Spoon: a minimal dynamic object system
 91

chapter twenty-four: deployment

92
 Spoon: a minimal dynamic object system

Spoon: a minimal dynamic object system
 93

appendix A: the Spoon story

94
 Spoon: a minimal dynamic object system

Spoon: a minimal dynamic object system
 95

appendix B: notes on the text

96
 Spoon: a minimal dynamic object system

Spoon: a minimal dynamic object system
 97

❧

Teaching object-oriented programming to newcomers is tricky.

98
 Spoon: a minimal dynamic object system

index

Spoon: a minimal dynamic object system
 99

100
 Spoon: a minimal dynamic object system

colophon

This book was typeset by the author on an Apple Macintosh
PowerBook G4 computer, using the Pages editor, and converted to
PDF format for distribution and printing. Figures were prepared with
Squeak.

Spoon: a minimal dynamic object system
 101

